Ternary quadratic forms and Heegner divisors
نویسندگان
چکیده
منابع مشابه
Equidistribution of Heegner Points and Ternary Quadratic Forms
We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allo...
متن کاملHeegner Divisors, L-functions and Harmonic Weak Maass Forms
Recent works, mostly related to Ramanujan’s mock theta functions, make use of the fact that harmonic weak Maass forms can be combinatorial generating functions. Generalizing works of Waldspurger, Kohnen and Zagier, we prove that such forms also serve as “generating functions” for central values and derivatives of quadratic twists of weight 2 modular L-functions. To obtain these results, we cons...
متن کاملOrders at Infinity of Modular Forms with Heegner Divisors
Borcherds described the exponents a(n) in product expansions f = q Q∞ n=1(1−q ) of meromorphic modular forms with a Heegner divisor. His description does not directly give any information about h, the order of vanishing at infinity of f . We give p-adic formulas for h in terms of generalized traces given by sums over the zeroes and poles of f . Specializing to the case of the Hilbert class poly...
متن کاملRepresentation by Ternary Quadratic Forms
The problem of determining when an integral quadratic form represents every positive integer has received much attention in recent years, culminating in the 15 and 290 Theorems of Bhargava-Conway-Schneeberger and Bhargava-Hanke. For ternary quadratic forms, there are always local obstructions, but one may ask whether there are ternary quadratic forms which represent every locally represented in...
متن کاملFast Reduction of Ternary Quadratic Forms
We show that a positive de nite integral ternary form can be reduced with O(M(s) log s) bit operations, where s is the binary encoding length of the form and M(s) is the bit-complexity of s-bit integer multiplication. This result is achieved in two steps. First we prove that the the classical Gaussian algorithm for ternary form reduction, in the variant of Lagarias, has this worst case running ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Ramanujan Journal
سال: 2015
ISSN: 1382-4090,1572-9303
DOI: 10.1007/s11139-015-9697-5